# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Crohns_Disease" | |
cohort = "GSE186582" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Crohns_Disease" | |
in_cohort_dir = "../DATA/GEO/Crohns_Disease/GSE186582" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Crohns_Disease/GSE186582.csv" | |
out_gene_data_file = "./output/preprocess/1/Crohns_Disease/gene_data/GSE186582.csv" | |
out_clinical_data_file = "./output/preprocess/1/Crohns_Disease/clinical_data/GSE186582.csv" | |
json_path = "./output/preprocess/1/Crohns_Disease/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1. Determine whether the dataset likely contains gene expression data | |
is_gene_available = True # Based on the microarray-based gene expression description | |
# Step 2. Identify data availability and define conversion functions | |
# 2.1 Identify the sample characteristics rows | |
# The dictionary indicates: | |
# 0 -> location: {M6, M0I, M0M, Ctrl} | |
# 1 -> gender: {Female, Male} | |
# 2 -> smoking: {Yes, No, Ctrl} | |
# 3 -> postoperative anti tnf treatment: {No, Yes, Ctrl} | |
# 4 -> rutgeerts: {0, i2b, 1, Ctrl, i2a, i3, i4} | |
# 5 -> rutgeertrec: {Rem, Rec, Ctrl} | |
# We will use row 0 to encode Crohn's disease presence (1) vs control (0). | |
# Gender data is in row 1. No age information is found. | |
trait_row = 0 # "location: M6 / M0I / M0M" => CD, "location: Ctrl" => control | |
age_row = None # No age information found | |
gender_row = 1 # "gender: Female / Male" | |
# 2.1 Determine trait data availability | |
# We have a row for the trait, so it is available | |
is_trait_available = (trait_row is not None) | |
# 2.2 Define data type conversion functions | |
def convert_trait(x: str) -> int: | |
""" | |
Convert the location string into a binary indicator of Crohn's disease: 1 for CD, 0 for control. | |
""" | |
# Parse the portion after the colon | |
parts = x.split(":") | |
if len(parts) < 2: | |
return None | |
value = parts[1].strip() # e.g. M6, M0I, M0M, or Ctrl | |
if value == "Ctrl": | |
return 0 | |
else: | |
return 1 | |
# Since there's no age row, we don't define convert_age (we will pass None) | |
def convert_gender(x: str) -> int: | |
""" | |
Convert the gender string into a binary indicator: 0 for female, 1 for male. | |
""" | |
# Parse the portion after the colon | |
parts = x.split(":") | |
if len(parts) < 2: | |
return None | |
value = parts[1].strip() # e.g. Female or Male | |
if value.lower() == "female": | |
return 0 | |
elif value.lower() == "male": | |
return 1 | |
else: | |
return None | |
# Step 3. Save metadata (initial filtering) | |
# If either gene or trait is unavailable, the dataset is filtered out at this stage. | |
# Otherwise, we continue preprocessing. is_final=False means we perform only initial filtering. | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4. If trait data is available, extract clinical features | |
if trait_row is not None: | |
# Assume 'clinical_data' is the DataFrame we obtained for sample characteristics | |
selected_clinical_df = geo_select_clinical_features( | |
clinical_df=clinical_data, | |
trait=trait, | |
trait_row=trait_row, | |
convert_trait=convert_trait, | |
age_row=age_row, | |
convert_age=None, | |
gender_row=gender_row, | |
convert_gender=convert_gender | |
) | |
# Observe the output | |
previewed = preview_df(selected_clinical_df) | |
print("Preview of selected clinical data:", previewed) | |
# Save to CSV | |
selected_clinical_df.to_csv(out_clinical_data_file, index=False) | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# These identifiers (e.g., "1053_at", "1552256_a_at") appear to be Affymetrix microarray probe set IDs. | |
# They do not represent human gene symbols. Therefore, we need to map them to gene symbols. | |
requires_gene_mapping = True | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. From the preview of the gene annotation dataframe, we see that "ID" matches the probe identifiers | |
# (e.g. "1053_at"), and "Gene Symbol" contains the actual gene symbols. | |
probe_column = "ID" | |
symbol_column = "Gene Symbol" | |
# 2. Build the gene mapping dataframe using our predefined library function | |
mapping_df = get_gene_mapping( | |
annotation=gene_annotation, | |
prob_col=probe_column, | |
gene_col=symbol_column | |
) | |
# 3. Convert probe-level measurements (gene_data) into gene-level expression data | |
gene_data = apply_gene_mapping( | |
expression_df=gene_data, | |
mapping_df=mapping_df | |
) | |
# Print a summary of the resulting gene expression data | |
print("Converted gene expression data shape:", gene_data.shape) | |
print("Head of the gene expression data:\n", gene_data.head()) | |
import os | |
import pandas as pd | |
# 1) Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# 2) Read the clinical DataFrame in a way that preserves the feature names as the row index | |
# and sample IDs as columns. Since we saved it with index=False previously, the first column | |
# in the CSV is now an unnamed index column, which we can use for the DF index. | |
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) | |
# 3) Link the clinical and genetic data | |
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) | |
# 4) Handle missing values in the linked data | |
linked_data = handle_missing_values(linked_data, trait) | |
# 5) Check for biased features (including the trait) | |
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) | |
# 6) Final validation and saving metadata | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=True, | |
is_biased=trait_biased, | |
df=linked_data, | |
note="Data from GSE186582, trait is Crohn's disease." | |
) | |
# 7) If the dataset is usable, save the linked data | |
if is_usable: | |
linked_data.to_csv(out_data_file) |