# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Anxiety_disorder" | |
cohort = "GSE60190" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Anxiety_disorder" | |
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE60190" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE60190.csv" | |
out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE60190.csv" | |
out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE60190.csv" | |
json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" | |
# STEP 1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("\nSample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1: Determine if this dataset likely contains gene expression data | |
# From the background info, it's clear that this is a microarray-based gene expression dataset. | |
is_gene_available = True | |
# Step 2: Identify data availability for trait, age, and gender | |
# and define the corresponding row indices and conversion functions. | |
# --------------------------------------------------------------- | |
# 2.1 Data Availability | |
# We do not see any explicit or strongly inferable row key for "Anxiety_disorder" in the sample characteristics, | |
# so we consider the trait unavailable. | |
trait_row = None | |
# We see age data in key=5 with multiple unique numeric values, so it's available. | |
age_row = 5 | |
# We see gender data in key=7 ("Sex: F" or "Sex: M"), so it's available. | |
gender_row = 7 | |
# 2.2 Data Type Conversion | |
def convert_trait(x: str): | |
""" | |
Since trait_row is None (trait not available), this function is not actually used. | |
We provide a placeholder that returns None. | |
""" | |
return None | |
def convert_age(x: str): | |
""" | |
Convert age from a string like 'age: 30.5' to a float. | |
Unknown or invalid values become None. | |
""" | |
try: | |
# Split at colon, take right side, strip spaces | |
val_str = x.split(':', 1)[1].strip() | |
return float(val_str) | |
except: | |
return None | |
def convert_gender(x: str): | |
""" | |
Convert gender from a string like 'Sex: F' or 'Sex: M' to 0 or 1. | |
Unknown values become None. | |
""" | |
try: | |
val_str = x.split(':', 1)[1].strip().upper() | |
if val_str in ['F', 'FEMALE']: | |
return 0 | |
elif val_str in ['M', 'MALE']: | |
return 1 | |
else: | |
return None | |
except: | |
return None | |
# Step 3: Conduct initial filtering on dataset usability | |
# Trait data availability depends on whether trait_row is None. | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4: Clinical Feature Extraction | |
# Only do this step if trait_row is not None. In this case, trait_row is None, so we skip it. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# After examining the provided gene identifiers, they are Illumina probe IDs (e.g., ILMN_1343291), | |
# which are not standard human gene symbols. Therefore, they require mapping to the correct gene symbols. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Decide which column in the gene annotation stores the probe IDs matching those in the gene expression data ("ID"), | |
# and which column stores the gene symbols ("Symbol"). | |
probe_id_col = "ID" | |
gene_symbol_col = "Symbol" | |
# 2. Get a gene mapping dataframe by extracting these two columns. | |
gene_mapping_df = get_gene_mapping( | |
annotation=gene_annotation, | |
prob_col=probe_id_col, | |
gene_col=gene_symbol_col | |
) | |
# 3. Convert probe-level measurements to gene-level measurements by applying the mapping. | |
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping_df) | |
# STEP 7: Data Normalization and Linking | |
import pandas as pd | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
print(f"Saved normalized gene data to {out_gene_data_file}") | |
# Since trait_row was None, we have no trait data; skip linking clinical data or trait-based steps. | |
# 5. Conduct final quality validation | |
# The library mandates that when is_final=True, we must provide both df and is_biased as non-None. | |
# Here, we have no trait data, so we pass an empty DataFrame and set is_biased=False (arbitrary boolean), | |
# which will mark the dataset as not usable for trait-based analysis. | |
empty_df = pd.DataFrame() | |
is_trait_available = False | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, # We did confirm gene expression is available | |
is_trait_available=is_trait_available, | |
is_biased=False, # Arbitrary boolean to satisfy the function requirement | |
df=empty_df, | |
note="Trait data is unavailable for this cohort." | |
) | |
# 6. If the dataset were usable, we would save final linked data, but here it will not be usable. | |
if is_usable: | |
print("Dataset unexpectedly marked as usable; no trait present.") | |
else: | |
print("No trait data, so the dataset is not usable for trait-based analysis. Skipping final output.") |