|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Anxiety_disorder" |
|
cohort = "GSE78104" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Anxiety_disorder" |
|
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE78104" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE78104.csv" |
|
out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE78104.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE78104.csv" |
|
json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" |
|
|
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
gender_row = 2 |
|
|
|
age_row = 3 |
|
|
|
|
|
def convert_trait(value: str): |
|
"""Convert a disease state value into binary, mapping OCD to 1 and normal control to 0.""" |
|
if ":" in value: |
|
value = value.split(":", 1)[1].strip().lower() |
|
if "compulsive" in value: |
|
return 1 |
|
elif "normal" in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str): |
|
"""Convert age string like 'age: 25y' into an integer.""" |
|
if ":" in value: |
|
value = value.split(":", 1)[1].strip().lower() |
|
value = value.replace("y", "") |
|
try: |
|
return float(value) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(value: str): |
|
"""Convert gender string like 'gender: male'/'gender: female' into binary, female->0, male->1.""" |
|
if ":" in value: |
|
value = value.split(":", 1)[1].strip().lower() |
|
if value == "male": |
|
return 1 |
|
elif value == "female": |
|
return 0 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_selected = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
preview = preview_df(clinical_selected) |
|
print("Preview of selected clinical features:") |
|
print(preview) |
|
clinical_selected.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GeneSymbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print(f"Saved normalized gene data to {out_gene_data_file}") |
|
|
|
|
|
def unify_sample_ids(df): |
|
df.columns = df.columns.astype(str).str.strip().str.strip('"') |
|
df.columns = df.columns.str.replace(r'\.CEL.*$', '', regex=True) |
|
return df |
|
|
|
selected_clinical = unify_sample_ids(clinical_selected) |
|
normalized_gene_data = unify_sample_ids(normalized_gene_data) |
|
|
|
common_samples = set(selected_clinical.columns).intersection(normalized_gene_data.columns) |
|
if len(common_samples) == 0: |
|
print("Warning: No matching sample IDs were found. The dataset may be misaligned.") |
|
selected_clinical = selected_clinical.loc[:, list(common_samples)] |
|
normalized_gene_data = normalized_gene_data.loc[:, list(common_samples)] |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Cohort data processed with ID alignment fix." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file, index=True) |
|
print(f"Saved final linked data to {out_data_file}") |
|
else: |
|
print("The dataset is not usable for trait-based association. Skipping final output.") |