# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Anxiety_disorder" | |
cohort = "GSE94119" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Anxiety_disorder" | |
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE94119" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE94119.csv" | |
out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE94119.csv" | |
out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE94119.csv" | |
json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" | |
# STEP 1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("\nSample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # Based on the background info (Illumina HT-12v4 BeadChip microarray) | |
# 2. Variable Availability and Data Type Conversion | |
# From the sample characteristics, we see: | |
# - trait (Anxiety_disorder): Not explicitly in the dictionary, and all are anxiety patients => no variation | |
# - age: Not found in the dictionary | |
# - gender: Key 0 with 'FEMALE' and 'MALE' | |
trait_row = None # No variation or row for Anxiety_disorder | |
age_row = None # No row for age | |
gender_row = 0 # gender is stored in key 0 | |
# Define converter functions | |
def convert_trait(value: str): | |
# Not used here because trait is not available; return None | |
return None | |
def convert_age(value: str): | |
# Not used here because age_row is None; return None | |
return None | |
def convert_gender(value: str): | |
# Example values like "gender: FEMALE" or "gender: MALE" | |
parts = value.split(":") | |
if len(parts) < 2: | |
return None | |
gender_str = parts[1].strip().upper() | |
if gender_str == "FEMALE": | |
return 0 | |
elif gender_str == "MALE": | |
return 1 | |
else: | |
return None | |
# 3. Save Metadata (initial filtering) | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Only if trait_row is not None (which it isn't). So skip. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# Based on the listed Illumina probe IDs (e.g., ILMN_1651228), these are not human gene symbols. | |
# They will require mapping to get the official gene symbols. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Identify the relevant columns in the gene annotation dataframe. | |
# From the preview, we see "ID" holds the Illumina identifiers (matching the expression data index), | |
# and "Symbol" holds the gene symbols. | |
# 2. Extract the mapping between probe IDs and gene symbols. | |
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") | |
# 3. Convert probe-level measurements to gene-level expression using apply_gene_mapping. | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# (Optionally, you might preview or inspect the resulting gene_data here if needed) | |
# STEP 7: Data Normalization and Linking | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
print(f"Saved normalized gene data to {out_gene_data_file}") | |
# Since we do not have a trait_row (it was None), there's no separate "selected_clinical". | |
# We'll just reuse the clinical_data from previous steps. | |
selected_clinical = clinical_data | |
# 2. Link the clinical and genetic data on sample IDs | |
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) | |
# 3 & 4. We skip trait-based missing-value handling and bias checks since there's no trait. | |
# 5. Conduct final quality validation and save metadata | |
# Since the trait is not available, set is_trait_available=False. | |
# We must also provide is_biased=False to comply with validate_and_save_cohort_info's requirement when is_final=True. | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, # No trait to judge bias. | |
df=linked_data, | |
note="No trait data available in this cohort." | |
) | |
# 6. If the dataset is deemed usable (unlikely here without trait), save the final linked data | |
if is_usable: | |
linked_data.to_csv(out_data_file, index=True) | |
print(f"Saved final linked data to {out_data_file}") | |
else: | |
print("The dataset is not usable for trait-based association. Skipping final output.") |