|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Breast_Cancer" |
|
cohort = "GSE207847" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Breast_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE207847" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Breast_Cancer/GSE207847.csv" |
|
out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE207847.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE207847.csv" |
|
json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
|
|
def convert_trait(value: str): |
|
""" |
|
Convert trait data to binary or continuous. |
|
Since 'trait_row' is None, this function will not be used. |
|
In other contexts, we'd parse the value after the colon and map |
|
known variants to desired data type. Here, return None as placeholder. |
|
""" |
|
return None |
|
|
|
def convert_age(value: str): |
|
""" |
|
Convert age data to a continuous variable. |
|
Since 'age_row' is None, this function will not be used. |
|
In other contexts, we'd parse the value after the colon, |
|
convert to float, handle unknown as None, etc. |
|
""" |
|
return None |
|
|
|
def convert_gender(value: str): |
|
""" |
|
Convert gender data to binary (female=0, male=1). |
|
Since 'gender_row' is None, this function will not be used. |
|
""" |
|
return None |
|
|
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if is_trait_available: |
|
|
|
pass |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
probe_col = 'ID' |
|
gene_symbol_col = 'gene_assignment' |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped gene_data shape:", gene_data.shape) |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
selected_clinical_df = pd.DataFrame() |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
if trait not in linked_data.columns: |
|
|
|
empty_df = pd.DataFrame() |
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=False, |
|
df=empty_df, |
|
note="No trait data available for this dataset." |
|
) |
|
else: |
|
|
|
linked_data_processed = handle_missing_values(linked_data, trait_col=trait) |
|
|
|
|
|
trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data_final, |
|
note="Dataset processed with GEO pipeline. Checked for missing values and bias." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data_final.to_csv(out_data_file) |