|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Cardiovascular_Disease" |
|
cohort = "GSE273225" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" |
|
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE273225" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE273225.csv" |
|
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE273225.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE273225.csv" |
|
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
try: |
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
except AssertionError: |
|
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") |
|
soft_file, matrix_file = None, None |
|
|
|
if soft_file is None or matrix_file is None: |
|
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") |
|
else: |
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, |
|
background_prefixes, |
|
clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
|
|
|
|
age_row = 3 |
|
|
|
|
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(x: str): |
|
""" |
|
No trait data is available, so always return None. |
|
""" |
|
return None |
|
|
|
def convert_age(x: str): |
|
""" |
|
Convert 'donor age (y): 63' to a continuous numeric value. |
|
Parse out the number after the colon, if available. |
|
""" |
|
try: |
|
|
|
val_str = x.split(':')[-1].strip() |
|
return float(val_str) |
|
except: |
|
return None |
|
|
|
def convert_gender(x: str): |
|
""" |
|
Convert 'donor sex: male' -> 1, 'donor sex: female' -> 0. |
|
Return None if parsing fails. |
|
""" |
|
try: |
|
val_str = x.split(':')[-1].strip().lower() |
|
if val_str == 'female': |
|
return 0 |
|
elif val_str == 'male': |
|
return 1 |
|
else: |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_final = False |
|
validate_and_save_cohort_info( |
|
is_final=is_final, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
if gene_data.empty: |
|
print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") |
|
import gzip |
|
|
|
|
|
skip_rows = 0 |
|
with gzip.open(matrix_file, 'rt') as file: |
|
for i, line in enumerate(file): |
|
if "!series_matrix_table_begin" in line: |
|
skip_rows = i + 1 |
|
break |
|
|
|
|
|
gene_data = pd.read_csv( |
|
matrix_file, |
|
compression="gzip", |
|
skiprows=skip_rows, |
|
delimiter="\t", |
|
on_bad_lines="skip" |
|
) |
|
gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) |
|
gene_data.set_index("ID", inplace=True) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = False |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: |
|
|
|
clinical_temp = pd.read_csv(out_clinical_data_file) |
|
|
|
|
|
if clinical_temp.shape[0] == 3: |
|
clinical_temp.index = [trait, "Age", "Gender"] |
|
elif clinical_temp.shape[0] == 2: |
|
clinical_temp.index = [trait, "Gender"] |
|
elif clinical_temp.shape[0] == 1: |
|
clinical_temp.index = [trait] |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=f"Final check on {cohort} with {trait}." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=pd.DataFrame(), |
|
note=f"No trait data found for {cohort}, final metadata recorded." |
|
) |
|
|