|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Cardiovascular_Disease" |
|
cohort = "GSE283522" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" |
|
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE283522" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE283522.csv" |
|
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE283522.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE283522.csv" |
|
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
try: |
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
except AssertionError: |
|
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") |
|
soft_file, matrix_file = None, None |
|
|
|
if soft_file is None or matrix_file is None: |
|
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") |
|
else: |
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, |
|
background_prefixes, |
|
clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
trait_row = None |
|
|
|
|
|
age_row = 2 |
|
|
|
|
|
gender_row = 5 |
|
|
|
|
|
def convert_trait(value: str): |
|
""" |
|
Since there's no actual cardiovascular disease data here, |
|
we return None for all inputs. |
|
""" |
|
return None |
|
|
|
def convert_age(value: str): |
|
""" |
|
Extract numeric age by parsing the string after 'age:'. |
|
If it's a range like '55 - 59', we take the midpoint. |
|
If it's 'not applicable' or invalid, return None. |
|
""" |
|
|
|
content = value.split(":", 1)[-1].strip().lower() |
|
if "not applicable" in content or "missing" in content: |
|
return None |
|
|
|
|
|
if "-" in content: |
|
parts = content.split("-") |
|
try: |
|
low = int(parts[0]) |
|
high = int(parts[1]) |
|
return (low + high) / 2 |
|
except ValueError: |
|
return None |
|
else: |
|
|
|
try: |
|
return float(content) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(value: str): |
|
""" |
|
Convert 'female' to 0, 'male' to 1, otherwise None. |
|
""" |
|
|
|
content = value.split(":", 1)[-1].strip().lower() |
|
if "female" in content: |
|
return 0 |
|
elif "male" in content: |
|
return 1 |
|
else: |
|
return None |
|
|
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
|
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
if gene_data.empty: |
|
print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") |
|
import gzip |
|
|
|
|
|
skip_rows = 0 |
|
with gzip.open(matrix_file, 'rt') as file: |
|
for i, line in enumerate(file): |
|
if "!series_matrix_table_begin" in line: |
|
skip_rows = i + 1 |
|
break |
|
|
|
|
|
gene_data = pd.read_csv( |
|
matrix_file, |
|
compression="gzip", |
|
skiprows=skip_rows, |
|
delimiter="\t", |
|
on_bad_lines="skip" |
|
) |
|
gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) |
|
gene_data.set_index("ID", inplace=True) |
|
|
|
|
|
print(gene_data.index[:20]) |