Liu-Hy's picture
Add files using upload-large-folder tool
3088323 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cervical_Cancer"
cohort = "GSE114243"
# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE114243"
# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE114243.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE114243.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE114243.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Decide if gene expression data is available
is_gene_available = True # Based on the background info, we infer gene expression data is available
# 2.1 Identify variable availability
trait_row = None # No valid key found for "Cervical_Cancer"
age_row = None # No valid key found for "age"
gender_row = None # No valid key found for "gender"
# 2.2 Define data conversion functions
def convert_trait(value: str):
# No data is available, so return None
return None
def convert_age(value: str):
# No data is available, so return None
return None
def convert_gender(value: str):
# No data is available, so return None
return None
# 3. Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Since trait_row is None, skip clinical feature extraction