# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Colon_and_Rectal_Cancer" | |
cohort = "GSE46862" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer" | |
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE46862" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/GSE46862.csv" | |
out_gene_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/gene_data/GSE46862.csv" | |
out_clinical_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/clinical_data/GSE46862.csv" | |
json_path = "./output/preprocess/1/Colon_and_Rectal_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # The dataset uses Affymetrix GeneChip arrays, indicating gene expression data. | |
# 2. Variable Availability and Data Type Conversion | |
# Based on the sample characteristics dictionary, the human trait "Colon_and_Rectal_Cancer" is not explicitly | |
# listed. All samples are rectal cancer, so there's no meaningful variation for our trait. | |
trait_row = None # Not available | |
# 'Age' data appears in row 1, with multiple distinct values. | |
age_row = 1 | |
# 'Gender' data appears in row 2, with values "male" and "female". | |
gender_row = 2 | |
# Define conversion functions: | |
def convert_trait(x: str) -> int: | |
# Since trait data is not available (trait_row is None), | |
# this function will never be called, but we define it for completeness. | |
return None | |
def convert_age(x: str) -> float: | |
# Typical format: "age: 68" | |
# Extract the substring after the first colon and convert to float. | |
try: | |
value_str = x.split(':', 1)[1].strip() | |
return float(value_str) | |
except: | |
return None | |
def convert_gender(x: str) -> int: | |
# Typical format: "Sex: male" or "Sex: female" | |
# Extract the substring after the colon and convert to binary (male=1, female=0). | |
try: | |
value_str = x.split(':', 1)[1].strip().lower() | |
if value_str == 'male': | |
return 1 | |
elif value_str == 'female': | |
return 0 | |
else: | |
return None | |
except: | |
return None | |
# 3. Save Metadata | |
# Trait data is not available because trait_row is None. | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we skip this step. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# The numeric IDs appear to be probe identifiers rather than standard human gene symbols. | |
requires_gene_mapping = True | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1 & 2. Identify the columns "ID" and "gene_assignment" as the probe IDs and gene symbol fields, respectively, | |
# then extract them to form the mapping dataframe. | |
mapping_df = get_gene_mapping(gene_annotation, "ID", "gene_assignment") | |
# 3. Convert probe-level data into gene-level data by applying this mapping to our gene_data. | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# STEP7 | |
# Since trait_row was determined to be None, there is no available trait data to link with. | |
# We only proceed with normalizing and saving the gene expression data, then record partial metadata. | |
# 1. Normalize the obtained gene data with synonyms from the NCBI Gene database. | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# 2 - 4. Skip any clinical linking or missing value handling since no trait data is available. | |
# 5. Perform partial validation (not final) to record that trait data is unavailable. | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
note="No trait data available; skipping final validation and combined dataset." | |
) | |
# 6. Since the dataset is not usable for trait-based analysis, we do not save any linked data. |