# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Colon_and_Rectal_Cancer" | |
cohort = "GSE56699" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer" | |
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE56699" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/GSE56699.csv" | |
out_gene_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/gene_data/GSE56699.csv" | |
out_clinical_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/clinical_data/GSE56699.csv" | |
json_path = "./output/preprocess/1/Colon_and_Rectal_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1: Determine gene expression data availability | |
is_gene_available = True # Based on the series description, this is a microarray dataset. | |
# Step 2: Identify row indices for trait/age/gender and define conversion functions | |
# 2.1. Data Availability | |
trait_row = None # All samples are rectal cancer; no variation across samples => not useful for association study | |
age_row = None # No row found that clearly represents age | |
gender_row = None # No row found that clearly represents gender | |
# 2.2. Define data type conversion functions | |
def convert_trait(value: str) -> Optional[int]: | |
# This dataset does not provide a separate trait column, | |
# but we still define a placeholder function. | |
# If needed, parse the string after the colon: | |
# For instance, if the dataset had a line like "Trait: case", we might do: | |
# real_value = value.split(':')[-1].strip().lower() | |
# return 1 if real_value == "case" else 0 if real_value == "control" else None | |
return None | |
def convert_age(value: str) -> Optional[float]: | |
# Placeholder function, since age is not available. | |
# If we had real data, we would parse after the colon, convert to float, handle unknown as None. | |
return None | |
def convert_gender(value: str) -> Optional[int]: | |
# Placeholder function, since gender is not available. | |
# Typically, we parse after the colon, convert female->0, male->1, else None | |
return None | |
# Step 3: Initial filtering and record saving | |
is_trait_available = (trait_row is not None) | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4: Extract and preview clinical features if trait data is available | |
if trait_row is not None: | |
selected_clinical_df = geo_select_clinical_features( | |
clinical_data, # assuming 'clinical_data' is our DataFrame from the previous step | |
trait=trait, | |
trait_row=trait_row, | |
convert_trait=convert_trait, | |
age_row=age_row, | |
convert_age=convert_age, | |
gender_row=gender_row, | |
convert_gender=convert_gender | |
) | |
preview_result = preview_df(selected_clinical_df, n=5) | |
print("Preview of selected clinical features:", preview_result) | |
selected_clinical_df.to_csv(out_clinical_data_file, index=False) | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP6: Gene Identifier Mapping | |
# 1. Decide which columns store the probe IDs and gene symbols, and create the mapping DataFrame | |
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") | |
# 2. Convert probe-level measurements to gene-level data | |
gene_data = apply_gene_mapping(gene_data, gene_mapping_df) | |
# STEP 7 | |
# Trait data is unavailable, so we cannot do a final validation or linking based on an absent trait. | |
# However, we can still normalize and save the gene expression data, then record partial metadata indicating that | |
# the dataset is not usable because it lacks trait information. | |
# 1. Normalize the gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# 2. Because trait data is unavailable, we skip linking, missing-value handling, and bias assessment. | |
# 3. Perform partial (initial) validation to record that trait data is unavailable. | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, # We have gene data | |
is_trait_available=False # Trait data is unavailable | |
) | |
# 4. Since the dataset is missing trait data, it is not suitable for final analysis; do not save linked data. |