|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Colon_and_Rectal_Cancer" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/1/Colon_and_Rectal_Cancer/cohort_info.json" |
|
|
|
import os |
|
import pandas as pd |
|
|
|
|
|
subdirs = [ |
|
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', |
|
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', |
|
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', |
|
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', |
|
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', |
|
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', |
|
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', |
|
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', |
|
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', |
|
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', |
|
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', |
|
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', |
|
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' |
|
] |
|
|
|
|
|
candidate_subdirs = [s for s in subdirs if 'colon_and_rectal_cancer' in s.lower()] |
|
|
|
if not candidate_subdirs: |
|
print("No matching subdirectory found for Colon_and_Rectal_Cancer. Skipping this trait.") |
|
else: |
|
|
|
chosen_subdir = candidate_subdirs[0] |
|
cohort_dir = os.path.join(tcga_root_dir, chosen_subdir) |
|
|
|
|
|
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical Data Columns:", clinical_df.columns.tolist()) |
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
age_subset = clinical_df[candidate_age_cols] if candidate_age_cols else pd.DataFrame() |
|
gender_subset = clinical_df[candidate_gender_cols] if candidate_gender_cols else pd.DataFrame() |
|
|
|
|
|
print("candidate_age_cols =", candidate_age_cols) |
|
print("candidate_gender_cols =", candidate_gender_cols) |
|
|
|
|
|
if not age_subset.empty: |
|
print("Age Data Preview:", preview_df(age_subset, n=5)) |
|
if not gender_subset.empty: |
|
print("Gender Data Preview:", preview_df(gender_subset, n=5)) |
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
gender_col = "gender" |
|
|
|
print("Chosen age column:", age_col) |
|
print("Chosen gender column:", gender_col) |
|
|
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
gender_col = "gender" |
|
|
|
selected_clinical_df = tcga_select_clinical_features( |
|
clinical_df=clinical_df, |
|
trait=trait, |
|
age_col=age_col, |
|
gender_col=gender_col |
|
) |
|
|
|
|
|
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) |
|
normalized_gene_df.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
linked_data = selected_clinical_df.join(normalized_gene_df.T, how='inner') |
|
|
|
|
|
processed_linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, final_data = judge_and_remove_biased_features(processed_linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=final_data, |
|
note="Preprocessing complete for Colon_and_Rectal_Cancer (TCGA)." |
|
) |
|
|
|
|
|
if is_usable: |
|
final_data.to_csv(out_data_file) |
|
clinical_cols = [c for c in [trait, "Age", "Gender"] if c in final_data.columns] |
|
if clinical_cols: |
|
final_data[clinical_cols].to_csv(out_clinical_data_file) |