Liu-Hy's picture
Add files using upload-large-folder tool
dd19378 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE235070"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE235070"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE235070.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE235070.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background info, this appears to be a SuperSeries about AML patients
# Cannot determine if it contains gene expression data based on limited info
is_gene_available = False
# 2.1 Data Availability
# From sample characteristics:
# Row 0 contains disease state info which indicates AML trait
trait_row = 0
# Age and gender info not available
age_row = None
gender_row = None
# 2.2. Data Type Conversion Functions
def convert_trait(x):
# Extract value after colon and convert to binary
# 'patient with AML' indicates positive case (1)
if pd.isna(x):
return None
value = x.split(': ')[-1].strip().lower()
if 'aml' in value:
return 1
return None
convert_age = None
convert_gender = None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview and save clinical data
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)