Liu-Hy's picture
Add files using upload-large-folder tool
a0b62f5 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Aniridia"
cohort = "GSE137996"
# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137996"
# Output paths
out_data_file = "./output/preprocess/3/Aniridia/GSE137996.csv"
out_gene_data_file = "./output/preprocess/3/Aniridia/gene_data/GSE137996.csv"
out_clinical_data_file = "./output/preprocess/3/Aniridia/clinical_data/GSE137996.csv"
json_path = "./output/preprocess/3/Aniridia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Series summary mentions mRNA analysis with microarrays
# 2.1 Data Availability
trait_row = 2 # Disease status in Feature 2
age_row = 0 # Age data in Feature 0
gender_row = 1 # Gender data in Feature 1
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Binary: 0 for control, 1 for disease
if not isinstance(x, str):
return None
value = x.split(": ")[-1].lower()
if "aak" in value:
return 1
elif "control" in value:
return 0
return None
def convert_age(x):
# Continuous
if not isinstance(x, str):
return None
try:
return float(x.split(": ")[-1])
except:
return None
def convert_gender(x):
# Binary: 0 for female, 1 for male
if not isinstance(x, str):
return None
value = x.split(": ")[-1].lower()
if value in ['f', 'w']: # 'w' likely means woman
return 0
elif value == 'm':
return 1
return None
# 3. Save Initial Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the provided data, the gene identifiers are Agilent probe IDs (A_19_P format)
# These are not standard human gene symbols and need to be mapped
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Looking at the gene identifiers in gene expression data (e.g., A_19_P00315452)
# and in gene annotation data, 'ID' column has the same format
# 'GENE_SYMBOL' column contains the gene symbols we want to map to
# 2. Get mapping between probe IDs and gene symbols
probe_to_gene_map = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, probe_to_gene_map)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)