Liu-Hy's picture
Add files using upload-large-folder tool
a0b62f5 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ankylosing_Spondylitis"
cohort = "GSE73754"
# Input paths
in_trait_dir = "../DATA/GEO/Ankylosing_Spondylitis"
in_cohort_dir = "../DATA/GEO/Ankylosing_Spondylitis/GSE73754"
# Output paths
out_data_file = "./output/preprocess/3/Ankylosing_Spondylitis/GSE73754.csv"
out_gene_data_file = "./output/preprocess/3/Ankylosing_Spondylitis/gene_data/GSE73754.csv"
out_clinical_data_file = "./output/preprocess/3/Ankylosing_Spondylitis/clinical_data/GSE73754.csv"
json_path = "./output/preprocess/3/Ankylosing_Spondylitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression data availability check
is_gene_available = True # Based on series title and background, this is gene expression data
# 2.1 Data availability check
trait_row = 3 # 'disease' field contains trait info
age_row = 1 # 'age (yr)' field contains age info
gender_row = 0 # 'Sex' field contains gender info
# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
"""Convert trait value to binary: 1 for AS, 0 for healthy control"""
if not value or 'disease:' not in value:
return None
value = value.split('disease:')[1].strip().lower()
if 'ankylosing spondylitis' in value:
return 1
elif 'healthy control' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age value to continuous numeric"""
if not value or 'age (yr):' not in value:
return None
try:
return float(value.split('age (yr):')[1].strip())
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary: 1 for male, 0 for female"""
if not value or 'Sex:' not in value:
return None
value = value.split('Sex:')[1].strip().lower()
if 'male' in value:
return 1
elif 'female' in value:
return 0
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features if trait data available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:", preview)
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers starting with "ILMN_" indicate these are Illumina probe IDs
# They need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get gene mapping from probe IDs to gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)