Liu-Hy's picture
Add files using upload-large-folder tool
a0b62f5 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Anxiety_disorder"
cohort = "GSE78104"
# Input paths
in_trait_dir = "../DATA/GEO/Anxiety_disorder"
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE78104"
# Output paths
out_data_file = "./output/preprocess/3/Anxiety_disorder/GSE78104.csv"
out_gene_data_file = "./output/preprocess/3/Anxiety_disorder/gene_data/GSE78104.csv"
out_clinical_data_file = "./output/preprocess/3/Anxiety_disorder/clinical_data/GSE78104.csv"
json_path = "./output/preprocess/3/Anxiety_disorder/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This dataset contains both mRNA and lncRNA expression data, which is suitable
is_gene_available = True
# 2.1 Variable Availability
# Trait data is in row 1 - "disease state"
trait_row = 1
# Age data is in row 3
age_row = 3
# Gender data is in row 2
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Extract value after colon and trim whitespace
val = value.split(":")[1].strip()
# Convert to binary: OCD = 1, control = 0
if "Obsessive-Compulsive Disorder" in val:
return 1
elif "normal control" in val:
return 0
return None
def convert_age(value):
# Extract age value and convert to float
try:
# Extract number before 'y'
age = float(value.split(":")[1].strip().replace("y",""))
return age
except:
return None
def convert_gender(value):
# Extract gender and convert to binary
val = value.split(":")[1].strip()
if "female" in val.lower():
return 0
elif "male" in val.lower():
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Clinical features preview:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the gene identifiers shown, these appear to be microarray probe IDs
# (e.g. '(+)E1A_r60_1', 'A_19_P00315459') rather than human gene symbols.
# These will need to be mapped to standard gene symbols.
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. The 'ID' column in gene annotation matches the probe identifiers in gene expression data
# The 'GeneSymbol' column contains corresponding gene symbols
# 2. Create mapping dataframe with probe ID and gene symbol columns
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GeneSymbol')
# 3. Apply gene mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print preview of gene-level data
print("Mapped gene expression data preview:")
print("Shape:", gene_data.shape)
print("\nFirst few rows:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)