Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE123086"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE123086"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from CD4+ T cells using microarray
is_gene_available = True
# 2.1 Data Availability
# Trait is in Feature 1 (primary diagnosis), values include ASTHMA and others
trait_row = 1
# Gender is in Feature 2 and 3 (Sex appears in both)
gender_row = 2
# Age appears in Features 3 and 4
age_row = 3
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait values to binary (0 for control, 1 for case)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].upper()
if 'ASTHMA' in value:
return 1
elif value == 'HEALTHY_CONTROL':
return 0
return None
def convert_age(value: str) -> float:
"""Convert age values to continuous numeric"""
if not isinstance(value, str):
return None
if not value.startswith('age: '):
return None
try:
return float(value.split(': ')[-1])
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender values to binary (0 for female, 1 for male)"""
if not isinstance(value, str):
return None
if not value.startswith('Sex: '):
return None
value = value.split(': ')[-1].upper()
if value == 'FEMALE':
return 0
elif value == 'MALE':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# The IDs in gene annotation correspond to the row IDs in gene expression data
# The ENTREZ_GENE_ID contains IDs that we first map to
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ENTREZ_GENE_ID')
# Apply the mapping to convert probe expression to gene expression
entrez_data = apply_gene_mapping(gene_data, mapping_df)
# Convert Entrez IDs to gene symbols using NCBI synonym database
gene_data = normalize_gene_symbols_in_index(entrez_data)
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Load previously saved data
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Inspect data alignment
print("Clinical data shape:", clinical_data.shape)
print("Gene data shape:", gene_data.shape)
print("Clinical data columns:", clinical_data.columns[:5])
print("Gene data columns:", gene_data.columns[:5])
# Transpose data to get samples in rows, genes in columns
clinical_data = clinical_data.T
gene_data = gene_data.T
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, 'Asthma')
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Asthma')
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data from CD4+ T cells comparing asthma patients with healthy controls."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
# Load previously saved data
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Verify data validity
if gene_data.empty:
print("Gene expression data is empty. Previous preprocessing steps likely failed.")
is_gene_available = False
is_trait_available = True
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=False, # Set a definite value
df=clinical_data, # Provide the clinical data
note="Gene expression data processing failed, resulting in empty data."
)
else:
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data from CD4+ T cells comparing asthma patients with healthy controls."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)