Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE185658"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE185658"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE185658.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains microarray data for gene expression (see Series_summary)
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability and Location
trait_row = 1 # 'group' feature contains asthma status
age_row = None # Age data not available
gender_row = None # Gender data not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert asthma status to binary: 1 for asthma, 0 for healthy"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
if 'Asthma' in value: # Both AsthmaHDM and AsthmaHDMNeg are asthma cases
return 1
elif value == 'Healthy':
return 0
return None
convert_age = None # No age data
convert_gender = None # No gender data
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers are numeric IDs like '7892501', not standard gene symbols
# These appear to be probe IDs from a microarray platform that need to be mapped to gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Identify mapping columns from gene annotation
# 'ID' column in annotation matches probe IDs in gene expression data
# 'gene_assignment' contains gene symbols and annotations
prob_col = 'ID'
gene_col = 'gene_assignment'
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Print the shape and preview of mapped gene data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)