Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bile_Duct_Cancer"
cohort = "GSE131027"
# Input paths
in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer"
in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE131027"
# Output paths
out_data_file = "./output/preprocess/3/Bile_Duct_Cancer/GSE131027.csv"
out_gene_data_file = "./output/preprocess/3/Bile_Duct_Cancer/gene_data/GSE131027.csv"
out_clinical_data_file = "./output/preprocess/3/Bile_Duct_Cancer/clinical_data/GSE131027.csv"
json_path = "./output/preprocess/3/Bile_Duct_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the series title and summary, this appears to be a study focusing on genetic mutations and variants
# It's likely there will be gene expression data to study these variations
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Bile Duct Cancer) data is available in index 1 under 'cancer'
trait_row = 1
# Age and gender are not explicitly available in the characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
"""Convert cancer type to binary for Bile Duct Cancer"""
if pd.isna(x):
return None
# Extract value after colon and strip whitespace
value = x.split(':')[1].strip().lower()
# Return 1 for bile duct cancer, 0 for other cancers
return 1 if 'bile duct cancer' in value else 0
def convert_age(x: str) -> float:
"""Convert age to continuous value"""
# Not used since age data is not available
return None
def convert_gender(x: str) -> int:
"""Convert gender to binary"""
# Not used since gender data is not available
return None
# 3. Save Metadata
# Conduct initial filtering - trait data is available (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we proceed with clinical feature extraction
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_result = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview_result)
# Save clinical features to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and some data preview to verify structure
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
print("\nData preview:")
preview_subset = genetic_data.iloc[:5, :5]
print(preview_subset)
# These appear to be Affymetrix probe IDs rather than gene symbols based on the format
# (e.g. '1007_s_at', '1053_at') which is characteristic of older Affymetrix arrays.
# They will need to be mapped to standard human gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# From the previews we can see that:
# - Gene expression data uses probe IDs like '1007_s_at'
# - Gene annotation data has 'ID' column with the same format probe IDs
# - Gene annotation data has 'Gene Symbol' column with human gene symbols
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the result
print("\nFirst few genes and their expression values:")
preview_result = preview_df(gene_data)
print(preview_result)
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)