|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Breast_Cancer" |
|
cohort = "GSE225328" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Breast_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE225328" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE225328.csv" |
|
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE225328.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE225328.csv" |
|
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
|
|
age_row = None |
|
|
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(x: str) -> int: |
|
"""Convert breast cancer status to binary""" |
|
if not isinstance(x, str): |
|
return None |
|
x = x.lower().split(': ')[-1] |
|
if 'breast cancer' in x: |
|
return 1 |
|
return None |
|
|
|
def convert_age(x: str) -> float: |
|
"""Convert age to float""" |
|
|
|
return None |
|
|
|
def convert_gender(x: str) -> int: |
|
"""Convert gender to binary with female=0, male=1""" |
|
|
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("All column names:", gene_metadata.columns.tolist()) |
|
print("\nPreview first few rows of each column to locate numeric IDs:") |
|
for col in gene_metadata.columns: |
|
sample_values = gene_metadata[col].dropna().head().tolist() |
|
print(f"\n{col}:") |
|
print(sample_values) |
|
|
|
|
|
import gzip |
|
print("\nRaw SOFT file preview:") |
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
header = [] |
|
for i, line in enumerate(f): |
|
header.append(line.strip()) |
|
if i >= 10: |
|
break |
|
print('\n'.join(header)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gene_data.index.name = 'miRNA' |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
gene_data = pd.DataFrame(gene_data, dtype=float) |
|
gene_data.index = gene_data.index.astype(str) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |