Liu-Hy's picture
Add files using upload-large-folder tool
3ee376c verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE225328"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE225328"
# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE225328.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE225328.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE225328.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Series title indicates transcriptome profiling
# 2.1 Data Availability
# All samples are breast cancer patients based on Feature 0
trait_row = 0
# No age information available
age_row = None
# All samples are female based on Feature 1
gender_row = None # Though gender info exists, it's constant so marked as unavailable
# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
"""Convert breast cancer status to binary"""
if not isinstance(x, str):
return None
x = x.lower().split(': ')[-1]
if 'breast cancer' in x:
return 1
return None
def convert_age(x: str) -> float:
"""Convert age to float"""
# Not used since age data is unavailable
return None
def convert_gender(x: str) -> int:
"""Convert gender to binary with female=0, male=1"""
# Not used since gender is constant (all female)
return None
# 3. Save initial filtering results
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features since trait_row is not None
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
sample_values = gene_metadata[col].dropna().head().tolist()
print(f"\n{col}:")
print(sample_values)
# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
header = []
for i, line in enumerate(f):
header.append(line.strip())
if i >= 10: # Preview first 10 lines
break
print('\n'.join(header))
# This appears to be miRNA data rather than typical gene expression data.
# The identifiers in miRNA_ID match with the IDs in gene_data.
# However, since this is miRNA data, we should not proceed with gene symbol mapping
# as miRNA names are already standardized identifiers.
# We can simply use the miRNA data directly.
# Instead of mapping, just clean up the index name
gene_data.index.name = 'miRNA'
# Save the miRNA expression data
gene_data.to_csv(out_gene_data_file)
# Since there was an error in gene mapping step, we can't proceed with full normalization
# But we can work with the available clinical data from step 2
# Load clinical data from previous steps and gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Create placeholder gene data with numeric IDs
gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file)