Liu-Hy's picture
Add files using upload-large-folder tool
3ee376c verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE248830"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE248830"
# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE248830.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE248830.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE248830.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info mentioning RNA extraction and gene expression profiling
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# For trait - based on histology field showing breast cancer vs lung cancer samples
trait_row = 2
# For age - available in row 0
age_row = 0
# For gender - available in row 1
gender_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not x or 'histology:' not in x:
return None
val = x.split('histology:')[1].strip().lower()
# Convert based on adenocarcinoma (lung cancer) vs other types (breast cancer)
if 'adenocaricnoma' in val: # Accommodate typo in data
return 1 # Lung cancer
elif any(x in val for x in ['tnbc', 'er', 'pr', 'her2']):
return 0 # Breast cancer
return None
def convert_age(x):
if not x or 'age at diagnosis:' not in x:
return None
val = x.split('age at diagnosis:')[1].strip()
try:
return float(val)
except:
return None
def convert_gender(x):
if not x or 'Sex:' not in x:
return None
val = x.split('Sex:')[1].strip().lower()
if val == 'female':
return 0
elif val == 'male':
return 1
return None
# 3. Save Metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the gene identifiers shown in the output, they appear to be official human gene symbols
# Examples like A2M, ACVR1C, ADAM12, ADGRE1, ADM etc. are standard human gene symbols
# Therefore no mapping is needed
requires_gene_mapping = False
# Save original gene data since symbols are already standard
gene_data.to_csv(out_gene_data_file)
# Load clinical data from previous steps
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains standard gene expression data and clinical information."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file)