|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Breast_Cancer" |
|
cohort = "GSE283522" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Breast_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE283522" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE283522.csv" |
|
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE283522.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE283522.csv" |
|
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 6 |
|
|
|
age_row = 2 |
|
|
|
gender_row = 5 |
|
|
|
def convert_trait(value: str) -> int: |
|
|
|
if value is None or pd.isna(value): |
|
return None |
|
value = value.lower() |
|
if 'invasive breast cancer' in value: |
|
return 1 |
|
elif 'true healthy' in value or 'no tumor' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
if value is None or pd.isna(value) or value.endswith('not applicable'): |
|
return None |
|
|
|
|
|
parts = value.replace('age: ', '').split(' - ') |
|
if len(parts) != 2: |
|
return None |
|
|
|
try: |
|
start = float(parts[0]) |
|
end = float(parts[1]) |
|
return (start + end) / 2 |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
if value is None or pd.isna(value): |
|
return None |
|
|
|
value = value.lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_data, |
|
trait="Breast_Cancer", |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of extracted clinical data:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
with gzip.open(matrix_file, 'rt') as f: |
|
print("First 10 lines after finding marker:") |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for j in range(10): |
|
try: |
|
next_line = next(f) |
|
print(f"Line {j+1}: {next_line[:200]}") |
|
except StopIteration: |
|
break |
|
break |
|
|
|
|
|
gene_data = pd.read_csv(matrix_file, compression='gzip', skiprows=206, sep='\t', index_col=0) |
|
|
|
print("\nShape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
print("This is RNA-seq data where genes are directly measured without probes.") |
|
print("Gene annotation mapping step will be skipped.") |
|
|
|
|
|
gene_metadata = pd.DataFrame(columns=['ID', 'Gene']) |
|
print("\nEmpty annotation dataframe created with columns:") |
|
print(gene_metadata.columns.tolist()) |
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=False, |
|
is_trait_available=False |
|
) |