Liu-Hy's picture
Add files using upload-large-folder tool
3ee376c verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE283522"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE283522"
# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE283522.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE283522.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE283522.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Gene Expression Data Availability
# Based on background info, this is RNA-seq data of breast cancer
is_gene_available = True
# Variable Availability and Data Type Conversion
# Sample category indicates if sample is tumor or not
trait_row = 6
# Age data available in 5-year ranges
age_row = 2
# Sex is recorded explicitly
gender_row = 5
def convert_trait(value: str) -> int:
# Sample category field contains information about tumor status
if value is None or pd.isna(value):
return None
value = value.lower()
if 'invasive breast cancer' in value:
return 1
elif 'true healthy' in value or 'no tumor' in value:
return 0
return None
def convert_age(value: str) -> float:
if value is None or pd.isna(value) or value.endswith('not applicable'):
return None
# Extract age range and take the midpoint
parts = value.replace('age: ', '').split(' - ')
if len(parts) != 2:
return None
try:
start = float(parts[0])
end = float(parts[1])
return (start + end) / 2
except:
return None
def convert_gender(value: str) -> int:
if value is None or pd.isna(value):
return None
value = value.lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# Initial filtering and metadata saving
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# Extract clinical features if trait data available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait="Breast_Cancer",
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical data:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Debug marker line and data format
with gzip.open(matrix_file, 'rt') as f:
print("First 10 lines after finding marker:")
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Print next 10 lines after marker
for j in range(10):
try:
next_line = next(f)
print(f"Line {j+1}: {next_line[:200]}")
except StopIteration:
break
break
# Try reading gene expression data with modified settings
gene_data = pd.read_csv(matrix_file, compression='gzip', skiprows=206, sep='\t', index_col=0)
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data using the provided function
gene_data = get_genetic_data(matrix_file)
# Print information about the data
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# After inspecting file format, we see this is RNA-seq data without probe annotations
# Print finding and proceed with an empty annotation dataframe
print("This is RNA-seq data where genes are directly measured without probes.")
print("Gene annotation mapping step will be skipped.")
# Create empty annotation dataframe to maintain pipeline compatibility
gene_metadata = pd.DataFrame(columns=['ID', 'Gene'])
print("\nEmpty annotation dataframe created with columns:")
print(gene_metadata.columns.tolist())
# Record failure status
validate_and_save_cohort_info(
is_final=False, # Use initial filtering to record availability status
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=False
)