|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Brugada_Syndrome" |
|
cohort = "GSE136992" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Brugada_Syndrome" |
|
in_cohort_dir = "../DATA/GEO/Brugada_Syndrome/GSE136992" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Brugada_Syndrome/GSE136992.csv" |
|
out_gene_data_file = "./output/preprocess/3/Brugada_Syndrome/gene_data/GSE136992.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Brugada_Syndrome/clinical_data/GSE136992.csv" |
|
json_path = "./output/preprocess/3/Brugada_Syndrome/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
def convert_trait(value): |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
|
|
if value == 'Control': |
|
return 0 |
|
elif value == 'Infection': |
|
return 1 |
|
return None |
|
|
|
|
|
age_row = 2 |
|
def convert_age(value): |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
if 'weeks' in value: |
|
try: |
|
|
|
return float(value.replace('weeks', '').strip()) / 52.0 |
|
except: |
|
return None |
|
return None |
|
|
|
|
|
gender_row = 3 |
|
def convert_gender(value): |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
if value == 'female': |
|
return 0 |
|
elif value == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_df) |
|
print("Preview of clinical data:") |
|
print(preview) |
|
|
|
|
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data preview:") |
|
print("\nColumn names:") |
|
print(list(genetic_data.columns)[:5]) |
|
print("\nFirst 5 rows:") |
|
print(genetic_data.head()) |
|
print("\nShape:", genetic_data.shape) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_metadata) |
|
print("\nGene annotation columns and sample values:") |
|
print(preview) |
|
|
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'Symbol' |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print(f"Original probe data shape: {genetic_data.shape}") |
|
print(f"After mapping to genes shape: {gene_data.shape}") |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Dataset contains gene expression data comparing 27 follicular thyroid cancers with 25 follicular thyroid adenomas." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |