|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Cardiovascular_Disease" |
|
cohort = "GSE235307" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" |
|
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE235307" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE235307.csv" |
|
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE235307.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE235307.csv" |
|
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 5 |
|
age_row = 2 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(x: str) -> int: |
|
"""Convert AF status to binary: 1 for AF, 0 for sinus rhythm""" |
|
value = x.split(": ")[-1].strip() |
|
if "Atrial fibrillation" in value: |
|
return 1 |
|
elif "Sinus rhythm" in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(x: str) -> float: |
|
"""Convert age to continuous value""" |
|
try: |
|
return float(x.split(": ")[-1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x: str) -> int: |
|
"""Convert gender to binary: 0 for female, 1 for male""" |
|
value = x.split(": ")[-1].strip().lower() |
|
if value == "female": |
|
return 0 |
|
elif value == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_features)) |
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
print("\nRaw file preview:") |
|
with gzip.open(matrix_file, 'rt') as f: |
|
for i, line in enumerate(f): |
|
if i > 30 and i < 35: |
|
print(line.strip()) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names and preview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
mapping_df = gene_metadata.loc[:, ['SPOT_ID', 'GENE_SYMBOL']] |
|
mapping_df = mapping_df.rename(columns={'SPOT_ID': 'ID', 'GENE_SYMBOL': 'Gene'}) |
|
mapping_df = mapping_df.astype({'ID': 'str'}) |
|
mapping_df = mapping_df.dropna() |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("Gene expression data shape:", gene_data.shape) |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
|
|
mapping_df = gene_metadata[gene_metadata['CONTROL_TYPE'] == 'FALSE'].loc[:, ['NAME', 'GENE_SYMBOL']] |
|
mapping_df = mapping_df.rename(columns={'NAME': 'ID', 'GENE_SYMBOL': 'Gene'}) |
|
mapping_df = mapping_df.astype({'ID': 'str'}) |
|
mapping_df = mapping_df.dropna() |
|
|
|
print("Mapping dataframe shape:", mapping_df.shape) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("\nGene expression data shape:", gene_data.shape) |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
mapping_df = gene_metadata[gene_metadata['CONTROL_TYPE'] == 'FALSE'].loc[:, ['ID', 'GENE_SYMBOL']] |
|
mapping_df = mapping_df.rename(columns={'ID': 'ID', 'GENE_SYMBOL': 'Gene'}) |
|
mapping_df = mapping_df.astype({'ID': 'str'}) |
|
mapping_df = mapping_df.dropna() |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Gene expression data from blood samples in heart failure patients, measuring Atrial fibrillation status after 1 year follow-up. Contains trait (AF vs Sinus rhythm), age and gender data." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |