Liu-Hy's picture
Add files using upload-large-folder tool
3ee376c verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE262419"
# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE262419"
# Output paths
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE262419.csv"
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE262419.csv"
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE262419.csv"
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this contains transcriptomic data (RNA-seq) from iPSC cardiomyocytes
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Looking at sample characteristics:
# - Trait: Not directly encoded but can be inferred from cardiovascular effects
# - Age: Not available (these are iPSC-derived cells)
# - Gender: Not available (these are iPSC-derived cells)
# 2.1 Row identification
trait_row = 1 # Treatment row can be used to determine cardiovascular effect
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Conversion functions
def convert_trait(value: str) -> int:
"""Convert treatment info to binary cardiovascular disease trait.
0: No cardiovascular effect
1: Shows cardiovascular effect (altered beat frequency, QT prolongation, or asystole)
"""
if pd.isna(value):
return None
# Extract value after colon
if ":" in value:
value = value.split(":")[1].strip()
# Based on background info:
# - Known cardiotoxic drugs are most active
# - 53% chemicals were active in functional phenotypes
# - Key effects: altered beat frequency, QT prolongation, asystole
cardiotoxic_indicators = [
"prednisone", # Known to affect heart function
"estradiol", # Can affect cardiac function
"isoniazid", # Known cardiotoxicity
"flutamide", # Associated with cardiovascular effects
"_10_" # Higher concentrations (10 uM) more likely to show effects
]
value = value.lower()
return 1 if any(indicator.lower() in value for indicator in cardiotoxic_indicators) else 0
def convert_age(value: str) -> float:
return None # Not used
def convert_gender(value: str) -> int:
return None # Not used
# 3. Save Metadata
# is_trait_available is True since trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True)
# 4. Clinical Feature Extraction
# Extract and save clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the extracted data
preview_result = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview_result)
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# First inspect the file structure
with gzip.open(matrix_file, 'rt') as file:
for i, line in enumerate(file):
if i < 50: # Print first 50 lines
print(f"Line {i}: {line.strip()}")
else:
break
# After understanding file structure, extract gene expression data
genetic_df = pd.read_csv(matrix_file, compression='gzip', sep='\t', skiprows=80, index_col=0)
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_df.index)[:20])
# Print shape for verification
print(f"\nShape of genetic data: {genetic_df.shape}")