|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Cardiovascular_Disease" |
|
cohort = "GSE273225" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" |
|
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE273225" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE273225.csv" |
|
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE273225.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE273225.csv" |
|
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 12 |
|
|
|
|
|
age_row = 3 |
|
|
|
|
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(value: str) -> float: |
|
|
|
try: |
|
return float(value.split(": ")[1]) |
|
except: |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
|
|
try: |
|
return float(value.split(": ")[1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
|
|
try: |
|
gender = value.split(": ")[1].lower() |
|
if gender == "female": |
|
return 0 |
|
elif gender == "male": |
|
return 1 |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_df.index)[:20]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requires_gene_mapping = False |
|
|
|
genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_df) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Clinical data contains continuous trait (rewarming ischemia time) with age and gender information from lung transplant donors." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |