Liu-Hy's picture
Add files using upload-large-folder tool
1f7599a verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Chronic_Fatigue_Syndrome"
cohort = "GSE67311"
# Input paths
in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome"
in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE67311"
# Output paths
out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE67311.csv"
out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Dataset uses Affymetrix Human Gene arrays, indicating gene expression data is available
is_gene_available = True
# 2. Variable Availability and Data Type
# 2.1 Row identification
trait_row = 8 # Chronic fatigue syndrome status in row 8
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
"""Convert CFS status to binary (0: No CFS, 1: Has CFS)"""
if pd.isna(value):
return None
value = value.lower().split(': ')[-1]
if value == 'yes':
return 1
elif value == 'no':
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to float - not used as age unavailable"""
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary - not used as gender unavailable"""
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_df))
# Save clinical features
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Gene probe identifier pattern suggests they are not gene symbols
# The identifiers are numeric values in the format 7XXXXXX, which appear to be Illumina probe IDs
# We will need to perform identifier mapping
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for mapping
# 'ID' column in gene_metadata contains probe IDs matching genetic_df index
# 'gene_assignment' column contains gene symbols in the format "NM_XXX // GENESYMBOL // description"
# 2. Get mapping dataframe by extracting probe IDs and gene symbols
# Use text extraction to get gene symbols from gene_assignment strings
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# 3. Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print info about the mapping result
print(f"Original probe data shape: {genetic_df.shape}")
print(f"Gene expression data shape: {gene_data.shape}")
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data from blood samples used to study chronic fatigue syndrome"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)