Liu-Hy's picture
Add files using upload-large-folder tool
1f7599a verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Colon_and_Rectal_Cancer"
cohort = "GSE46517"
# Input paths
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE46517"
# Output paths
out_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/GSE46517.csv"
out_gene_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/gene_data/GSE46517.csv"
out_clinical_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/clinical_data/GSE46517.csv"
json_path = "./output/preprocess/3/Colon_and_Rectal_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# Gene Expression Data Availability
# From Series Info: Affymetrix U133A chip is used, which measures gene expression
is_gene_available = True
# Trait Data - Convert Primary/Metastatic Melanoma vs Others
trait_row = 0 # Found in key 0: "tissue type: ..."
def convert_trait(value):
if pd.isna(value):
return None
value = value.lower()
if 'metastatic melanoma' in value or 'primary melanoma' in value:
return 1
elif 'nevus' in value or 'normal' in value:
return 0
return None
# Age Data
age_row = 7 # Found in key 7: "age at time of resection: ..."
def convert_age(value):
if pd.isna(value):
return None
try:
# Extract years from format like "72y 4m"
years = float(value.split('y')[0].split(':')[-1].strip())
return years
except:
return None
# Gender Data
gender_row = 8 # Found in key 8: "gender: ..."
def convert_gender(value):
if pd.isna(value):
return None
value = value.lower().split(':')[-1].strip()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# Initial Validation
is_trait_available = True
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# Clinical Feature Extraction
clinical_features = geo_select_clinical_features(clinical_data, trait, trait_row,
convert_trait, age_row, convert_age,
gender_row, convert_gender)
clinical_preview = preview_df(clinical_features)
print(clinical_preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These appear to be Affymetrix probe IDs rather than gene symbols
# The '_at' suffix is characteristic of Affymetrix array probe identifiers
# These will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Extract mapping between probe IDs and gene symbols from gene annotation data
gene_mapping = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
# Convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(genetic_df, gene_mapping)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data from melanoma samples including metastatic/primary melanoma vs. nevi/normal"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)