|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Colon_and_Rectal_Cancer" |
|
cohort = "GSE46517" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE46517" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/GSE46517.csv" |
|
out_gene_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/gene_data/GSE46517.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/clinical_data/GSE46517.csv" |
|
json_path = "./output/preprocess/3/Colon_and_Rectal_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
def convert_trait(value): |
|
if pd.isna(value): |
|
return None |
|
value = value.lower() |
|
if 'metastatic melanoma' in value or 'primary melanoma' in value: |
|
return 1 |
|
elif 'nevus' in value or 'normal' in value: |
|
return 0 |
|
return None |
|
|
|
|
|
age_row = 7 |
|
def convert_age(value): |
|
if pd.isna(value): |
|
return None |
|
try: |
|
|
|
years = float(value.split('y')[0].split(':')[-1].strip()) |
|
return years |
|
except: |
|
return None |
|
|
|
|
|
gender_row = 8 |
|
def convert_gender(value): |
|
if pd.isna(value): |
|
return None |
|
value = value.lower().split(':')[-1].strip() |
|
if value == 'female': |
|
return 0 |
|
elif value == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = True |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
clinical_features = geo_select_clinical_features(clinical_data, trait, trait_row, |
|
convert_trait, age_row, convert_age, |
|
gender_row, convert_gender) |
|
clinical_preview = preview_df(clinical_features) |
|
print(clinical_preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
gene_mapping = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, gene_mapping) |
|
|
|
|
|
print("Gene expression data shape:", gene_data.shape) |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Dataset contains gene expression data from melanoma samples including metastatic/primary melanoma vs. nevi/normal" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |