Liu-Hy's picture
Add files using upload-large-folder tool
1f7599a verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Colon_and_Rectal_Cancer"
cohort = "GSE46862"
# Input paths
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE46862"
# Output paths
out_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/GSE46862.csv"
out_gene_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/gene_data/GSE46862.csv"
out_clinical_data_file = "./output/preprocess/3/Colon_and_Rectal_Cancer/clinical_data/GSE46862.csv"
json_path = "./output/preprocess/3/Colon_and_Rectal_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
# Based on background info, this dataset uses Affymetrix GenChip arrays for gene expression profiling
is_gene_available = True
# 2.1 Data availability and row identification
# Row 0 contains chemoradiation therapy response data that can be used to infer cancer status
trait_row = 0
# Row 1 contains age data
age_row = 1
# Row 2 contains gender data
gender_row = 2
# 2.2 Data type conversion functions
def convert_trait(x):
# Extract value after colon
if ':' in str(x):
value = str(x).split(':')[1].strip()
# Infer cancer treatment response -
# Convert to binary where MI (minimal response) = 1 (worse outcome)
# and other responses (MO/NT/TO) = 0 (better outcome)
if value == 'MI':
return 1
elif value in ['MO', 'NT', 'TO']:
return 0
return None
def convert_age(x):
if ':' in str(x):
value = str(x).split(':')[1].strip()
try:
return float(value)
except:
return None
return None
def convert_gender(x):
if ':' in str(x):
value = str(x).split(':')[1].strip().lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save metadata
# Trait data is available since trait_row is not None
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These appear to be probe IDs from a microarray platform, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Looking at the gene annotation data dictionary, 'ID' matches the probe IDs in gene expression data,
# and 'gene_assignment' contains gene symbol information
# Get a mapping dataframe with probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply the gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Normalize gene symbols to official HGNC symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print the shape and preview the processed gene expression data
print("\nProcessed gene expression data shape:", gene_data.shape)
print("\nPreview of processed gene expression data:")
print(preview_df(gene_data))
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data from rectal cancer samples with chemoradiation therapy response information"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)