Liu-Hy's picture
Add files using upload-large-folder tool
5716e25 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE142610"
# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE142610"
# Output paths
out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE142610.csv"
out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE142610.csv"
out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE142610.csv"
json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# The dataset summary mentions transcription profiling and gene sets,
# suggesting it contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Variable Row Numbers
# The dataset contains cell line samples with different treatments
# All samples are CFBE (cystic fibrosis bronchial epithelial) cells
# No age or gender data as these are cell lines
trait_row = 0 # Cell line info contains CF status
age_row = None # No age data for cell lines
gender_row = None # No gender data for cell lines
# 2.2 Conversion Functions
def convert_trait(value: str) -> int:
"""Convert CF status to binary
CFBE cells are CF (positive) samples
"""
if not isinstance(value, str):
return None
if 'CFBE' in value:
return 1 # CF positive
return None
def convert_age(value: str) -> float:
return None # Not used
def convert_gender(value: str) -> int:
return None # Not used
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the clinical data
print("Preview of extracted clinical features:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Most gene identifiers in the data appear to be valid human gene symbols (e.g. A1BG, A1CF, A2M)
# While some identifiers like '7A5' may need mapping, overall these are standard HGNC gene symbols
requires_gene_mapping = False
# 1. Normalize gene symbols and save
genetic_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_df.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_df)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)