Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE72462"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE72462"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE72462.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE72462.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE72462.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
# Get unique values by row in clinical data and limit the number shown
sample_chars = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in sample_chars.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # Background info mentions "gene expression microarray analysis"
# 2.1 Data Availability
trait_row = 0 # Insulin sensitivity response status as proxy for heart rate regulation
age_row = 3 # Age
gender_row = 2 # Sex
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert insulin sensitivity response to binary.
0: non-responder (worse heart rate regulation)
1: responder (better heart rate regulation)
"""
if not isinstance(value, str):
return None
value = value.split(': ')[1].lower() if ': ' in value else value.lower()
if 'non-responder' in value:
return 0
elif 'responder' in value:
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to continuous value."""
if not isinstance(value, str):
return None
value = value.split(': ')[1] if ': ' in value else value
try:
return float(value)
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary.
0: female
1: male
"""
if not isinstance(value, str):
return None
value = value.split(': ')[1].lower() if ': ' in value else value.lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)
# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
# These identifiers look like Affymetrix probe IDs ('_st' suffix is characteristic of Affymetrix arrays)
# They need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)
# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# From the preview, ID column in gene_annotation matches the probe IDs in gene expression data
# gene_assignment contains gene symbols along with other info
prob_col = 'ID'
gene_col = 'gene_assignment'
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# Apply mapping and convert probe measurements to gene expression values
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview the gene expression data
print("\nFirst 10 genes and their expression values:")
print(gene_data.head(10))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biases and remove biased demographic features
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'
if trait_type == "binary":
is_biased = judge_binary_variable_biased(linked_data, trait)
else:
is_biased = judge_continuous_variable_biased(linked_data, trait)
# Remove biased demographic features
if "Age" in linked_data.columns:
if judge_continuous_variable_biased(linked_data, "Age"):
linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
if judge_binary_variable_biased(linked_data, "Gender"):
linked_data = linked_data.drop(columns="Gender")
# 5. Validate and save cohort info
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)