Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Height"
cohort = "GSE131835"
# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE131835"
# Output paths
out_data_file = "./output/preprocess/3/Height/GSE131835.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE131835.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE131835.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the series title and summary, this is a gene expression profiling study using Affymetrix microarray
is_gene_available = True
# 2.1 Data Availability
# Height data is available in row 5
trait_row = 5
# Age data is available in row 3
age_row = 3
# Gender data is available in row 2
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
try:
# Extract value after 'height(cm): '
return float(x.split(': ')[1])
except:
return None
def convert_age(x):
try:
# Extract value after 'age: '
return float(x.split(': ')[1])
except:
return None
def convert_gender(x):
try:
# Extract value after 'Sex: '
gender = x.split(': ')[1].lower()
return 1 if gender == 'male' else 0 if gender == 'female' else None
except:
return None
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted data
preview = preview_df(selected_clinical_df)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1,
sep='\t', comment='!', header=0, index_col=0)
# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# The gene identifiers are in ENSEMBL format (ENSG...) followed by "_at"
# These need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. Looking at gene_metadata preview, 'ID' matches gene expression index format (ENSG..._at)
# and 'ORF' contains gene symbols
# 2. Get probe-to-gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF')
# 3. Apply the mapping to convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the result
print("\nConverted gene expression data:")
print(gene_data.head())
print("\nShape of gene expression data:", gene_data.shape)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from adipose tissue and height measurements from subjects"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)