Liu-Hy's picture
Add files using upload-large-folder tool
e6817b9 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hemochromatosis"
cohort = "GSE159676"
# Input paths
in_trait_dir = "../DATA/GEO/Hemochromatosis"
in_cohort_dir = "../DATA/GEO/Hemochromatosis/GSE159676"
# Output paths
out_data_file = "./output/preprocess/3/Hemochromatosis/GSE159676.csv"
out_gene_data_file = "./output/preprocess/3/Hemochromatosis/gene_data/GSE159676.csv"
out_clinical_data_file = "./output/preprocess/3/Hemochromatosis/clinical_data/GSE159676.csv"
json_path = "./output/preprocess/3/Hemochromatosis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the background information mentioning microarray experiments and gene expression profiling
is_gene_available = True
# 2. Variable Analysis
# 2.1 Data Availability
# Looking at sample characteristics:
# Trait (Hemochromatosis) can be determined from condition in row 0
trait_row = 0
# Age and gender not explicitly available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert condition to binary trait status.
Returns 1 for Haemochromatosis, 0 for other conditions"""
if pd.isna(value) or ':' not in value:
return None
value = value.split(':', 1)[1].strip().lower()
if 'haemochromatosis' in value or 'hemochromatosis' in value:
return 1
else:
return 0
convert_age = None
convert_gender = None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical)
print("Preview of clinical data:", preview)
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be probe IDs from a microarray platform, not human gene symbols
# They require mapping to corresponding gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract mapping between probe IDs and gene symbols
# gene_assignment contains gene symbols in format "NM_XXX // SYMBOL // description"
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
# Handle cases with no gene assignment
valid_rows = ~mapping_df['Gene'].str.contains('---', na=False)
mapping_df = mapping_df[valid_rows]
# Extract gene symbols from gene_assignment text
mapping_df['Gene'] = mapping_df['Gene'].apply(lambda x: x.split('//')[1].strip() if '//' in str(x) else None)
# Apply gene mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview gene data
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from liver tissue samples of patients with various liver conditions including hemochromatosis"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)