|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Hemochromatosis" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Hemochromatosis/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Hemochromatosis/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Hemochromatosis/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Hemochromatosis/cohort_info.json" |
|
|
|
|
|
tcga_subdirs = os.listdir(tcga_root_dir) |
|
tcga_subdirs = [d for d in tcga_subdirs if not d.startswith('.')] |
|
|
|
|
|
selected_cohort = 'TCGA_Liver_Cancer_(LIHC)' |
|
if selected_cohort not in tcga_subdirs: |
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False |
|
) |
|
else: |
|
|
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
preview_dict = {} |
|
if len(candidate_age_cols) > 0: |
|
age_data = clinical_df[candidate_age_cols].head() |
|
preview_dict.update({col: age_data[col].tolist() for col in candidate_age_cols}) |
|
|
|
if len(candidate_gender_cols) > 0: |
|
gender_data = clinical_df[candidate_gender_cols].head() |
|
preview_dict.update({col: gender_data[col].tolist() for col in candidate_gender_cols}) |
|
|
|
|
|
print(preview_dict) |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
print(f"Chosen age column: {age_col}") |
|
print(f"Chosen gender column: {gender_col}") |
|
|
|
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
|
|
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
normalized_genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.concat([selected_clinical_df, normalized_genetic_df.T], axis=1) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Used liver cancer (LIHC) data as a proxy for hemochromatosis since both affect liver function" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |