Liu-Hy's picture
Add files using upload-large-folder tool
06befd3 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypertension"
cohort = "GSE117261"
# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE117261"
# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE117261.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE117261.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE117261.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression availability check
# Yes, this dataset contains gene expression data based on background info mentioning "Gene expression microarray data"
is_gene_available = True
# 2. Variable availability and data type conversion
# 2.1 Row identifiers
trait_row = 2 # PAH subtypes in row 2
gender_row = 3 # Sex info in row 3
age_row = None # Age not available
# 2.2 Conversion functions
def convert_trait(x):
if not isinstance(x, str):
return None
val = x.split(': ')[-1].strip()
# Convert PAH subtypes to binary (1) vs control (0)
if val == 'Failed Donor':
return 0
elif val in ['IPAH', 'APAH', 'WHO 4', 'FPAH', 'Other']:
return 1
return None
def convert_gender(x):
if not isinstance(x, str):
return None
val = x.split(': ')[-1].strip()
if val == 'Female':
return 0
elif val == 'Male':
return 1
return None
def convert_age(x):
return None # Not used since age not available
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_df(clinical_df)
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Reviewing gene identifiers
# The identifiers appear to be numeric probe IDs (e.g., 7892501) rather than gene symbols.
# These look like Affymetrix probe IDs and will need to be mapped to gene symbols.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and gene assignments):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'gene_assignment' column: Contains gene symbol information")
# Extract gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe expression data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview results
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(preview_df(gene_data))
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)