Liu-Hy's picture
Add files using upload-large-folder tool
ba45cf6 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypothyroidism"
cohort = "GSE151158"
# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE151158"
# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE151158.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE151158.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE151158.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Background shows this is gene expression study of 594 genes
# 2.1 Data Availability
trait_row = 12 # hypothyroidism data found in row 12
age_row = 1 # age data found in row 1
gender_row = 2 # gender data found in row 2 as "Sex"
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
value = x.split(": ")[1] if ": " in x else x
if value.upper() == 'Y':
return 1
elif value.upper() == 'N':
return 0
return None
def convert_age(x):
if pd.isna(x):
return None
try:
age = int(x.split(": ")[1])
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
value = x.split(": ")[1] if ": " in x else x
if value.upper() == 'F':
return 0
elif value.upper() == 'M':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(clinical_features_df)
print(preview)
# Save to CSV
clinical_features_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These IDs are standard HUGO gene symbols - e.g. ABCB1, ABCF1, ABL1 are well-known gene symbols
# No mapping needed as they are already in the correct format
requires_gene_mapping = False
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data studying hypothyroidism in the context of NAFLD progression, with clinical annotations."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)