|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Liver_cirrhosis" |
|
cohort = "GSE212047" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Liver_cirrhosis" |
|
in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE212047" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE212047.csv" |
|
out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE212047.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE212047.csv" |
|
json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print("-" * 80) |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print("-" * 80) |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x): |
|
if x is None: |
|
return None |
|
|
|
value = x.split(": ")[-1].strip().lower() |
|
return None |
|
|
|
def convert_age(x): |
|
if x is None: |
|
return None |
|
|
|
value = x.split(": ")[-1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
if x is None: |
|
return None |
|
|
|
value = x.split(": ")[-1].strip().lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names and first few values in gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print("\nFirst few genes and their expression values:") |
|
print(preview_df(gene_data)) |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
minimal_df = pd.DataFrame(index=normalized_gene_data.index) |
|
minimal_df[trait] = 0 |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=minimal_df, |
|
note="This is mouse data with no human liver cirrhosis trait information available. Cannot be used for human trait association studies." |
|
) |
|
|
|
|