# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Liver_cirrhosis" | |
cohort = "GSE66843" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Liver_cirrhosis" | |
in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE66843" | |
# Output paths | |
out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE66843.csv" | |
out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE66843.csv" | |
out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE66843.csv" | |
json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json" | |
# Step 1: Get file paths | |
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) | |
# Step 2: Extract background info and clinical data from matrix file | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) | |
# Step 3: Get dictionary of unique values for each clinical feature | |
unique_values_dict = get_unique_values_by_row(clinical_data) | |
# Step 4: Print background info and sample characteristics | |
print("Dataset Background Information:") | |
print("-" * 80) | |
print(background_info) | |
print("\nSample Characteristics:") | |
print("-" * 80) | |
print(json.dumps(unique_values_dict, indent=2)) | |
# 1. Gene Expression Data Availability | |
# Based on summary and platform information, this appears to be a cell line study | |
# with potential gene expression data for HCV infection study | |
is_gene_available = True | |
# 2. Clinical Feature Analysis | |
# Looking at characteristics, this is a cell line study without human clinical data | |
trait_row = None # No trait data for liver cirrhosis | |
age_row = None # No age data | |
gender_row = None # No gender data | |
def convert_trait(x): | |
# Not needed as trait data unavailable | |
return None | |
def convert_age(x): | |
# Not needed as age data unavailable | |
return None | |
def convert_gender(x): | |
# Not needed as gender data unavailable | |
return None | |
# 3. Save initial filtering results | |
is_trait_available = trait_row is not None | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Skip as trait_row is None, indicating no clinical data available | |
# 1. Extract gene expression data from matrix file | |
genetic_data = get_genetic_data(matrix_file_path) | |
# 2. Print first 20 row IDs | |
print("First 20 gene/probe identifiers:") | |
print(genetic_data.index[:20]) | |
# These appear to be Illumina probe IDs (starting with ILMN_) rather than standard human gene symbols | |
# Illumina IDs need to be mapped to gene symbols for downstream analysis | |
requires_gene_mapping = True | |
# 1. Extract gene annotation data from SOFT file | |
gene_annotation = get_gene_annotation(soft_file_path) | |
# 2. Preview annotation data | |
print("Column names and first few values in gene annotation data:") | |
print(preview_df(gene_annotation)) | |
# 1. Observe gene identifiers | |
# From previous outputs: | |
# Gene expression data uses identifiers like ILMN_1343291 | |
# In gene annotation, 'ID' column has ILMN_ identifiers, 'Symbol' has gene symbols | |
# 2. Extract mapping between probe IDs and gene symbols | |
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') | |
# 3. Apply mapping to convert probe data to gene expression data | |
gene_data = apply_gene_mapping(genetic_data, mapping_data) | |
# 1. Normalize gene symbols and save gene data | |
gene_data = normalize_gene_symbols_in_index(gene_data) | |
gene_data.to_csv(out_gene_data_file) | |
# Skip remaining steps since no clinical data is available | |
# Dataset unusability was already recorded in initial filtering |