|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Longevity" |
|
cohort = "GSE16717" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Longevity" |
|
in_cohort_dir = "../DATA/GEO/Longevity/GSE16717" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Longevity/GSE16717.csv" |
|
out_gene_data_file = "./output/preprocess/3/Longevity/gene_data/GSE16717.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Longevity/clinical_data/GSE16717.csv" |
|
json_path = "./output/preprocess/3/Longevity/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print("-" * 80) |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print("-" * 80) |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
age_row = 2 |
|
|
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert long-lived status to binary.""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].lower().strip() |
|
if "long-lived" in value: |
|
return 1 |
|
elif "control" in value: |
|
return 0 |
|
elif "offspring" in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
"""Convert age string to float.""" |
|
if not isinstance(value, str): |
|
return None |
|
try: |
|
|
|
age = float(value.split(": ")[-1].split(" ")[0]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
"""Convert gender to binary (0=female, 1=male).""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].lower().strip() |
|
if value == "female": |
|
return 0 |
|
elif value == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
clinical_df = geo_select_clinical_features(clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
preview = preview_df(clinical_df) |
|
|
|
|
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names and first few values in gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
print("Available columns in the gene annotation data:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
print("\nChecking for additional annotation sections in SOFT file...") |
|
with gzip.open(soft_file_path, 'rt') as f: |
|
first_1000_lines = ''.join([next(f) for _ in range(1000)]) |
|
print(first_1000_lines) |
|
|
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['#', '!']) |
|
|
|
|
|
print("\nColumns in expanded annotation data:") |
|
print(gene_annotation.columns.tolist()) |
|
print("\nSample records:") |
|
print(gene_annotation.head().to_dict('records')) |
|
|
|
|
|
|
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
print("\nINFO: The gene identifiers in this dataset require additional processing steps to map to human gene symbols.") |
|
print("The probe-level data has been saved for further processing.") |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Longevity status based on group classification (long-lived sibs vs controls)" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |