|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Lower_Grade_Glioma" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json" |
|
|
|
|
|
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Lower_Grade_Glioma_(LGG)') |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0) |
|
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0) |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
cohort_dir = os.path.join(tcga_root_dir, trait) |
|
clinical_file, _ = tcga_get_relevant_filepaths(cohort_dir) |
|
clinical_df = pd.read_csv(clinical_file, index_col=0) |
|
|
|
|
|
age_preview = {} |
|
for col in candidate_age_cols: |
|
if col in clinical_df.columns: |
|
age_preview[col] = clinical_df[col].head(5).tolist() |
|
print("Age columns preview:", age_preview) |
|
|
|
|
|
gender_preview = {} |
|
for col in candidate_gender_cols: |
|
if col in clinical_df.columns: |
|
gender_preview[col] = clinical_df[col].head(5).tolist() |
|
print("\nGender columns preview:", gender_preview) |
|
|
|
candidate_age_cols = ["age", "composite_element_ref", "birth_days_to", "days_to_birth", "year_of_birth", "age_at_initial_pathologic_diagnosis"] |
|
candidate_gender_cols = ["gender"] |
|
|
|
|
|
clinical_data_preview = {} |
|
|
|
if len(candidate_age_cols) > 0: |
|
for col in candidate_age_cols: |
|
if col in clinical_df.columns: |
|
age_preview = preview_df(clinical_df[[col]], n=5) |
|
clinical_data_preview.update(age_preview) |
|
|
|
if len(candidate_gender_cols) > 0: |
|
for col in candidate_gender_cols: |
|
if col in clinical_df.columns: |
|
gender_preview = preview_df(clinical_df[[col]], n=5) |
|
clinical_data_preview.update(gender_preview) |
|
|
|
print("Clinical Data Preview:") |
|
print(clinical_data_preview) |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
age_col = 'age_at_initial_pathologic_diagnosis' |
|
gender_col = 'gender' |
|
|
|
|
|
clinical_data = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_data.to_csv(out_clinical_data_file) |
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(genetic_df) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.concat([clinical_data, normalized_gene_data.T], axis=1, join='inner') |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Data obtained from TCGA Lower Grade Glioma cohort (LGG). Trait is determined by sample type (tumor vs normal)." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
print(f"Linked data saved to: {out_data_file}") |
|
else: |
|
print("Dataset was not usable and was not saved.") |