|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Lung_Cancer" |
|
cohort = "GSE244647" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Lung_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244647" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244647.csv" |
|
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244647.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244647.csv" |
|
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 1 |
|
age_row = 5 |
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'tumour presence' in value: |
|
return 1 |
|
elif 'tumour free' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
if not value or ':' not in value: |
|
return None |
|
try: |
|
return float(value.split(':')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if value == 'female': |
|
return 0 |
|
elif value == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
is_gene_available = False |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
note="Dataset contains miRNA measurements instead of gene expression data" |
|
) |
|
print("WARNING: This dataset contains miRNA measurements and is not suitable for gene expression analysis.") |
|
print("Preprocessing pipeline will be terminated for this dataset.") |