|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Melanoma" |
|
cohort = "GSE202806" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Melanoma" |
|
in_cohort_dir = "../DATA/GEO/Melanoma/GSE202806" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Melanoma/GSE202806.csv" |
|
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE202806.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE202806.csv" |
|
json_path = "./output/preprocess/3/Melanoma/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert NF1 mutation status to binary - WT=0, MUT=1""" |
|
if value and isinstance(value, str): |
|
value = value.split(": ")[-1].strip().upper() |
|
if value == 'MUT': |
|
return 1 |
|
elif value == 'WT': |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to float - not used since age not available""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary - not used since gender not available""" |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Clinical data preview:") |
|
preview = preview_df(clinical_df) |
|
print(preview) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
|
|
|
|
print("\nSkipping gene expression data extraction since this dataset contains methylation data rather than gene expression data.") |