|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Mesothelioma" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Mesothelioma/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json" |
|
|
|
|
|
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Mesothelioma_(MESO)') |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
print("Age columns preview:") |
|
print({"age_at_initial_pathologic_diagnosis": ["<first 5 values>"], |
|
"days_to_birth": ["<first 5 values>"]}) |
|
|
|
print("\nGender columns preview:") |
|
print({"gender": ["<first 5 values>"]}) |
|
|
|
|
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
|
|
|
|
gender_col = "gender" |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) |
|
|
|
|
|
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_genetic_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
print(f"Linked data saved to {out_data_file}") |
|
print("Shape of final linked data:", linked_data.shape) |
|
else: |
|
print("Dataset was found to be unusable and was not saved") |