Liu-Hy's picture
Add files using upload-large-folder tool
9e2af38 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Metabolic_Rate"
cohort = "GSE101492"
# Input paths
in_trait_dir = "../DATA/GEO/Metabolic_Rate"
in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE101492"
# Output paths
out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE101492.csv"
out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE101492.csv"
out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE101492.csv"
json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info, this study examines lncRNAs and gene expression in adipose tissue
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait (insulin sensitivity) is in row 3
trait_row = 3
def convert_trait(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if 'resistant' in value:
return 1
elif 'sensitive' in value:
return 0
return None
# Age is in row 2
age_row = 2
def convert_age(x):
if not x or ':' not in x:
return None
try:
return float(x.split(':')[1].strip())
except:
return None
# Gender is in row 1, but it's constant (all female)
gender_row = None
def convert_gender(x):
return None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:", preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the ID format (18670xxx), these appear to be probe IDs or Illumina IDs,
# not standard HGNC gene symbols. Gene mapping will be required.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract mapping data with proper parsing of gene_assignment field
relevant_rows = gene_annotation[~gene_annotation['gene_assignment'].str.contains('Housekeeping Controls', na=False)]
def parse_gene_assignment(text):
if pd.isna(text) or '---' in str(text):
return None
parts = str(text).split('//')
if len(parts) >= 3:
gene_info = parts[2].strip()
if gene_info.startswith('gene:'):
return gene_info.split(':')[1].strip()
return gene_info
return None
relevant_rows['Gene'] = relevant_rows['gene_assignment'].apply(parse_gene_assignment)
mapping_data = relevant_rows[['ID', 'Gene']].dropna()
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the results
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)