Liu-Hy's picture
Add files using upload-large-folder tool
9e2af38 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Multiple_sclerosis"
cohort = "GSE141381"
# Input paths
in_trait_dir = "../DATA/GEO/Multiple_sclerosis"
in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE141381"
# Output paths
out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE141381.csv"
out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE141381.csv"
out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE141381.csv"
json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data - from series title and design, this is a gene expression study
is_gene_available = True
# 2.1 Data Availability
# For trait - not explicitly given but we can infer from treatment status
trait_row = 2 # Use treatment status as indicator
# For age
age_row = 1 # Age is recorded in feature 1
# For gender
gender_row = 0 # Gender is recorded in feature 0
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert treatment status to binary trait (0=healthy/control, 1=disease)"""
if pd.isna(value):
return None
value = value.lower().split(': ')[1]
if value == 'baseline': # All patients have MS at baseline
return 1
return None # Exclude treated/placebo since we only want baseline
def convert_age(value: str) -> Optional[float]:
"""Convert age to float"""
if pd.isna(value):
return None
value = value.lower().split(': ')[1]
if value == 'unknown':
return None
try:
return float(value)
except:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0=female, 1=male)"""
if pd.isna(value):
return None
value = value.lower().split(': ')[1]
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features
if trait_row is not None:
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
print("Preview of extracted clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers appear to be microarray probe IDs (starting with '16650')
# rather than standard human gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
# 'ID' column in annotation matches probe IDs from expression data
# 'gene_assignment' column contains gene symbols embedded in complex strings
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe data to gene data
# The function will automatically extract gene symbols from gene_assignment strings
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview results
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and convert trait based on treatment status
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Define trait: Baseline (1) vs Treated/Placebo (0)
def convert_treatment(x):
if pd.isna(x):
return None
treatment = x.lower().split(': ')[1]
return 1 if treatment == 'baseline' else 0
clinical_data.loc[trait] = clinical_data.loc[trait].apply(convert_treatment)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Treatment comparison study in Multiple Sclerosis patients, comparing baseline vs treated/placebo groups using blood transcriptome data."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and convert trait based on age
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Recalculate trait based on age (POMS: age ≤ 18 [1], AOMS: age > 18 [0])
clinical_data.loc[trait] = (clinical_data.loc['Age'] <= 18).astype(int)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Pediatric vs Adult Onset Multiple Sclerosis comparison based on blood transcriptome data. Trait defined as POMS (1) vs AOMS (0) using age cutoff of 18 years."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)