|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Pancreatic_Cancer" |
|
cohort = "GSE131027" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE131027" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE131027.csv" |
|
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE131027.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE131027.csv" |
|
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
|
|
is_gene_available = False |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert cancer type to binary indicating if it's pancreatic cancer""" |
|
if not value or ':' not in value: |
|
return None |
|
cancer_type = value.split(':')[1].strip().lower() |
|
return 1 if 'pancreatic cancer' in cancer_type else 0 |
|
|
|
def convert_age(value: str) -> float: |
|
"""Placeholder function since age data is not available""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Placeholder function since gender data is not available""" |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') |
|
|
|
|
|
mapped_gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
gene_data = mapped_gene_data |
|
|
|
|
|
print("Shape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of mapped data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene symbols:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
gene_data.index = gene_data.index.str.replace('-mRNA', '') |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("\nPre-linking data shapes:") |
|
print("Clinical data shape:", selected_clinical.shape) |
|
print("Gene data shape:", gene_data.shape) |
|
print("\nClinical data preview:") |
|
print(selected_clinical.head()) |
|
|
|
|
|
gene_data_t = gene_data.T |
|
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression data from pancreatic cancer study. All samples are cancer cases (no controls)." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |