Liu-Hy's picture
Add files using upload-large-folder tool
ba45cf6 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Pancreatic_Cancer"
cohort = "GSE157494"
# Input paths
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE157494"
# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE157494.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE157494.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE157494.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = filter_content_by_prefix(matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'],
unselect=False,
source_type='file',
return_df_a=False,
return_df_b=True,
transpose=True)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = filter_content_by_prefix(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_characteristics_ch'],
unselect=False,
source_type='file',
return_df_a=False,
return_df_b=True
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - the series summary mentions gene expression profiling with Affymetrix Gene Chip
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Sample Characteristics output is empty, indicating no clinical data available
trait_row = None
age_row = None
gender_row = None
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# 3. Save metadata
# Initial filtering - save info that this dataset has gene data but no clinical data
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Clinical Feature Extraction
# Skip since trait_row is None (no clinical data available)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the IDs (e.g. 1007_s_at, 1053_at), these are Affymetrix probe IDs
# from HG-U133_Plus_2 array platform, not gene symbols.
# They need to be mapped to human gene symbols for standardized analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Looking at gene_data index ['1007_s_at', '1053_at', '117_at'...] and
# gene_annotation dictionary preview, 'ID' column contains probe IDs matching gene_data index,
# and 'Gene Symbol' column contains the gene symbols we need
# Create mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Normalize gene symbols to standard format using synonym dictionary
gene_data = normalize_gene_symbols_in_index(gene_data)
# First get the gene expression data again
gene_data = get_genetic_data(matrix_file)
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
gene_data = apply_gene_mapping(gene_data, gene_mapping)
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# Update cohort info - dataset unusable due to lack of clinical data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note="Gene expression data available but no clinical annotations/controls present."
)
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get gene annotation first
gene_annotation = get_gene_annotation(soft_file)
# Get gene expression data
gene_data = get_genetic_data(matrix_file)
# Create mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Print dimensions of result for verification
print(f"\nShape of gene expression data after mapping: {gene_data.shape}")
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get gene annotation and expression data
gene_annotation = get_gene_annotation(soft_file)
gene_data = get_genetic_data(matrix_file)
# Create mapping and apply it
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Update cohort info - dataset unusable due to lack of clinical data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note="Gene expression data available but no clinical annotations/controls present."
)