|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Retinoblastoma" |
|
cohort = "GSE29683" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Retinoblastoma" |
|
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE29683" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE29683.csv" |
|
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE29683.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE29683.csv" |
|
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json" |
|
|
|
|
|
print("Directory contents:", os.listdir(in_cohort_dir)) |
|
|
|
|
|
matrix_file_path = os.path.join(in_cohort_dir, "GSE29683_series_matrix.txt.gz") |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("\nBackground Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert sample type to binary: 1 for tumor, 0 for cell line/xenograft""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].lower() |
|
if 'primary tumor' in value: |
|
return 1 |
|
elif any(x in value for x in ['cell line', 'xenograft']): |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
matrix_file_path = os.path.join(in_cohort_dir, "GSE29683_series_matrix.txt.gz") |
|
|
|
|
|
gene_annotation = get_gene_annotation(matrix_file_path) |
|
|
|
|
|
print("Column names:") |
|
print(gene_annotation.columns) |
|
|
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
prefixes_platform = ["^ID", "^Gene", "^GB_ACC", "^SPOT_ID"] |
|
gene_annotation = get_gene_annotation(matrix_file_path, prefixes=prefixes_platform) |
|
|
|
|
|
print("Platform annotation columns:") |
|
print(gene_annotation.columns) |
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'GB_ACC' |
|
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
print("\nPreview of mapped gene expression data:") |
|
print(preview_df(gene_data)) |
|
|
|
matrix_file_path = os.path.join(in_cohort_dir, "GSE29683_series_matrix.txt.gz") |
|
|
|
|
|
|
|
prefixes = ['!Platform_title', '!Platform_organism', '!Platform_technology', |
|
'!Platform_data_row_count', '!Platform_sample_id', |
|
'!Platform_target_source', '!Platform_distribution', |
|
'!Platform_manufacturer', '!Platform_coating', |
|
'!Platform_description', '!Platform_web_link', |
|
'!Platform_table_begin', '!Platform_table_end'] |
|
|
|
|
|
gene_annotation = get_gene_annotation(matrix_file_path, prefixes) |
|
|
|
|
|
print("Column names:") |
|
print(gene_annotation.columns) |
|
|
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
|
|
gene_data = pd.DataFrame(genetic_data.values, |
|
columns=genetic_data.columns, |
|
index=genetic_data.index) |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains gene expression profiles from human retinoblastoma samples. Limited gene symbol mapping possible due to probe IDs in matrix file lacking platform annotations. Used NCBI synonym mapping on probe IDs where possible." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |