Liu-Hy's picture
Add files using upload-large-folder tool
012bb62 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sickle_Cell_Anemia"
cohort = "GSE84633"
# Input paths
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia"
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE84633"
# Output paths
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE84633.csv"
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE84633.csv"
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE84633.csv"
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data
is_gene_available = True # Study title indicates gene expression data from PBMCs
# 2. Variable Availability and Conversion
# Trait: Available from disease field
trait_row = 2 # Key for disease status
def convert_trait(val):
if val is None:
return None
val = val.split(': ')[-1].lower()
if 'sickle cell disease' in val:
return 1
return None
# Age: Not available
age_row = None
convert_age = None
# Gender: Not available
gender_row = None
convert_gender = None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers appear to be Illumina probe IDs starting with '23'
# These are not human gene symbols and need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Extract gene mapping info
# 'ID' column matches probe IDs in expression data
# 'gene_assignment' contains gene symbols in format "RefSeq // GeneSymbol // Description"
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Extract standard gene symbols
mapping_df['Gene'] = mapping_df['Gene'].apply(lambda x: x.split('//')[1].strip() if isinstance(x, str) and '//' in x else None)
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the mapped gene data
print("\nGene expression data after mapping:")
print("Shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
print("\nSample of expression values:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)