Liu-Hy's picture
Add files using upload-large-folder tool
8c96bfd verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stroke"
cohort = "GSE47727"
# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE47727"
# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE47727.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE47727.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE47727.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, as series title mentions HumanHT-12 platform for gene expression profiling
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Age data is available in row 0
age_row = 0
def convert_age(value):
if not value or ':' not in value:
return None
try:
age = float(value.split(':')[1].strip())
return age
except:
return None
# Gender data is available in row 1
gender_row = 1
def convert_gender(value):
if not value or ':' not in value:
return None
gender = value.split(':')[1].strip().lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
# Trait data not available since all participants are controls (constant)
trait_row = None
def convert_trait(value):
# Not used since trait data unavailable
return None
# 3. Save metadata
is_trait_available = False if trait_row is None else True
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The ILMN_ prefix indicates these are Illumina probe IDs
# These need to be mapped to human gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Load gene expression data
gene_data = get_genetic_data(matrix_file)
# Extract gene mapping using ID and Symbol columns since ID matches ILMN identifiers in expression data
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply gene mapping to convert probe expressions to gene expressions
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Normalize gene symbols in index to standardized symbols and aggregate rows if needed
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save processed gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and link with genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining transcriptome profiles from peripheral blood of older adults, including some with stroke history."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)