Liu-Hy's picture
Add files using upload-large-folder tool
8c96bfd verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stroke"
cohort = "GSE48424"
# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE48424"
# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE48424.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE48424.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE48424.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data based on the dataset description
is_gene_available = True
# 2.1 Data Availability
# Trait (Stroke/PE) is available in feature 1 "disease status"
trait_row = 1
# Age is available in feature 3
age_row = 3
# Gender is not available - all subjects are female (pregnant women) based on study description
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
# Extract value after colon and strip whitespace
if ":" not in value:
return None
value = value.split(":")[1].strip().lower()
# Convert to binary where preeclampsia = 1, healthy = 0
if value == "preeclampsia":
return 1
elif value == "healthy":
return 0
return None
def convert_age(value: str) -> float:
# Extract age value after colon
if ":" not in value:
return None
value = value.split(":")[1].strip()
try:
return float(value)
except:
return None
def convert_gender(value: str) -> None:
# No gender conversion needed since not available
return None
# 3. Save Metadata - Initial Filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
# Extract clinical features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene IDs are Agilent probe IDs (A_23_P format)
# These need to be mapped to gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Load gene expression data
gene_data = get_genetic_data(matrix_file)
# Extract gene mapping from annotation data
# ID column contains probe IDs (A_23_P format) matching gene expression data
# GENE_SYMBOL column contains human gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply gene mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Save mapped gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and link with genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining transcriptome profiles from peripheral blood of older adults, including some with stroke history."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)